Optische Messtechniken zeigen das Potential des von der Natur inspirierten Flügel-Designs auf
Freitag, 4. März 2016
Methoden zur Fluid-Structure Interaction Messung von LaVision
Seit langem schon fasziniert die Flugdynamik von Insekten und Vögeln die Luft- und Raumfahrt-Community und das aus gutem Grund. Die Flugmechanismen von Insekten und Vögeln sind derart komplex und vielfältig, so dass Ingenieure bis heute nicht in der Lage sind, diese vollständig nachzubilden. Doch genauso wie die Luftfahrtforschung voranschreitet, wächst auch das Verständnis für diese Phänomene. Das Forschungslabor für Experimentelle Strömungsmechanik der Universität Southampton unter der Leitung von Prof. Ganapathisubramani ist eine der Gruppen, die sich mit dieser Thematik beschäftigt. Der Doktorand Robert Bleischwitz sagt über seine bahnbrechenden Arbeiten zur Untersuchung von Flügel-Designs, inspiriert durch das Flugverhalten von Fledermäusen:
"The increasing interest in small scale Unmanned Air Vehicles (UAV) and Micro Air Vehicles (MAV) turned the attention of our research community to the development of flexible, biologically inspired membrane wings known from bats. In order to understand the dynamics of bat flight, which is a complex Fluid-Structure Interaction (FSI) phenomenon, an experimental wind tunnel study was conducted at the University of Southampton. This study needed to simultaneously capture loads, wing deformations as well the flow dynamics in high speed. While the loads where measured using load cells instrumentation, the wing displacements and flow characteristics needed to be investigated using non-intrusive, full-field measurement techniques. 3D Digital Image Correlation (3D-DIC) was used to capture the deformation of the wing with 0.1 mm resolution and Time-Resolved Particle Image Velocimetry (TR-PIV) was used to measure the flow evolution at a high sampling rate of 800 Hz. The optical measurement system from LaVision (consisting of both FlowMaster and StrainMaster modules) allowed seamless integration of the two DIC cameras and LED lamps along with the two PIV cameras and a high power laser. Moreover, the added benefits of using this LaVison equipment, such as blue LED lamps and green laser, allowed for simultaneous measurements to be performed because it was possible to separate the respective wavelengths for the two systems. The full concerto was managed from a highly accurate high-speed controller which was triggered externally, thus making it possible to achieve synchronized measurements.
The knowledge of all three measurement techniques allowed to find clear answers on the highly dynamic FSI coupling effects and the source of the physical problem. The benefit of capturing the Fluid-Structure Interactions became also useful in combining similar high-speed experiments of the membrane with different PIV based flow-planes. So we were running the same membrane wing case with two different PIV-setups (one planar streamwise plane, one stereo-spanwise) independently on different days. Later, we were able to extract the DIC based membrane information as guiding master, allowing to phase-average the different PIV-planes into one cycle, thus reconstructing a full image of the phenomenon under investigation. Due to the high dynamic resolution (high signal to noise ratio) of cameras, we were able to identify membrane induced flow oscillation even in the wake one chord behind the wings trailing edge. As a result, we are capable to tell what kind of wing has what kind of frequency footprint from the wake only. And, we know how the structures with this frequency content look like. POD analysis on membrane and flow were critical to identify the main frequency components of the wing deformation and their relation to the flow evolution."
Die von Robert Bleischwitz und seinen Kollegen durchgeführten Arbeiten führten letztlich zur Entwicklung eines bio-inspirierten UAV-Prototypen, den sie sowohl erfolgreich im Windkanal als auch über Wasser getestet haben, wie in dem Artikel ‘Is it a bird? Is it a bat? No, it's the future of drone technology’1 beschrieben.
1 (c) Guardian News & Media Ltd
News
Newsletter
Informieren Sie sich über neue Produkte und Entwicklungen, interessante Forschungsaktivitäten, kommende Veranstaltungen und unsere Seminare.